• Skip to primary navigation
  • Skip to main content
  • Skip to footer
CAR - The Canadian Association of Radiologists
MENUMENU
  • About
    • President’s Message
    • Board and Executive
      • Call for Nominations
    • Strategic Plan
    • Annual Reports
    • History
    • Associates
      • Canada Safe Imaging (CSI)
      • Canadian Radiological Foundation
      • Canadian Association for Interventional Radiology
      • Canadian Heads of Academic Radiology
    • Corporate Partners
    • Policies
      • Disclaimer and Privacy Policy
      • Conflict of Interest Policy
      • Endorsement Policy
      • Communications Policy
      • Social Media Policy
    • Contact us
  • Membership
    • Member Benefits
      • Life and Disability Insurance
      • STATdx
    • RAD Resources
    • Join / Renew
    • CAR Affiliate Societies
      • Canadian Emergency, Trauma and Acute Care Radiology Society
      • Canadian Society of Abdominal Radiology
      • Canadian Society of Pediatric Radiology
      • Canadian Society of Skeletal Radiology
      • Canadian Society of Thoracic Radiology
    • Awards
      • Fellowship of the CAR Award
      • Gold Medal Award
      • Distinguished Career Achievement Award
      • Young Investigator Award
      • Scientific and Educational Awards
    • Career Opportunities
    • Volunteering
      • Working Groups
      • Volunteer Recognition
    • Trainees
      • Medical Student Network (MSN)
      • Resident and Fellow Section (RFS)
      • Canadian Fellowship Opportunities
      • Virtual Trainee Day
  • Advocacy
    • Submissions to Government
    • Day on the Hill
    • Radiology Resilience
    • Value of Radiology
    • Get Involved
    • International Day of Radiology (IDoR)
  • Patient Care
    • Practice Guidelines
    • Referral Guidelines
    • Guides
    • Statements and Advisories
    • Patient Resources
    • CAR Accreditation Programs
    • COVID-19
  • Conference
  • Education
    • RAD Academy
    • Events and Webinars
    • Accreditation of CPD Activities
      • CPD Accreditation Application
    • Peer Learning
  • Journal
  • Innovation
    • Artificial Intelligence
    • Suggested Reading on AI
    • Specialty-Specific Resources for AI
  • News

CAR - Canadian Association of Radiologists

The Canadian Association of Radiologists is the national specialty association for radiologists, dedicated to medical imaging excellence in patient care

  • Français
  • Contact
  • RAD Academy
  • Member Login
MENUMENU
  • About
    • President’s Message
    • Board and Executive
      • Call for Nominations
    • Strategic Plan
    • Annual Reports
    • History
    • Associates
      • Canada Safe Imaging (CSI)
      • Canadian Radiological Foundation
      • Canadian Association for Interventional Radiology
      • Canadian Heads of Academic Radiology
    • Corporate Partners
    • Policies
      • Disclaimer and Privacy Policy
      • Conflict of Interest Policy
      • Endorsement Policy
      • Communications Policy
      • Social Media Policy
    • Contact us
  • Membership
    • Member Benefits
      • Life and Disability Insurance
      • STATdx
    • RAD Resources
    • Join / Renew
    • CAR Affiliate Societies
      • Canadian Emergency, Trauma and Acute Care Radiology Society
      • Canadian Society of Abdominal Radiology
      • Canadian Society of Pediatric Radiology
      • Canadian Society of Skeletal Radiology
      • Canadian Society of Thoracic Radiology
    • Awards
      • Fellowship of the CAR Award
      • Gold Medal Award
      • Distinguished Career Achievement Award
      • Young Investigator Award
      • Scientific and Educational Awards
    • Career Opportunities
    • Volunteering
      • Working Groups
      • Volunteer Recognition
    • Trainees
      • Medical Student Network (MSN)
      • Resident and Fellow Section (RFS)
      • Canadian Fellowship Opportunities
      • Virtual Trainee Day
  • Advocacy
    • Submissions to Government
    • Day on the Hill
    • Radiology Resilience
    • Value of Radiology
    • Get Involved
    • International Day of Radiology (IDoR)
  • Patient Care
    • Practice Guidelines
    • Referral Guidelines
    • Guides
    • Statements and Advisories
    • Patient Resources
    • CAR Accreditation Programs
    • COVID-19
  • Conference
  • Education
    • RAD Academy
    • Events and Webinars
    • Accreditation of CPD Activities
      • CPD Accreditation Application
    • Peer Learning
  • Journal
  • Innovation
    • Artificial Intelligence
    • Suggested Reading on AI
    • Specialty-Specific Resources for AI
  • News
You are here: Home / Specialty-Specific Resources for AI

Specialty-Specific Resources for AI

Specialty-Specific Resources

The CAR is indebted to Eric Topol who compiled this list of state-of-the-art articles on machine learning in specialties that rely on medical imaging.

Radiology/Neurology

Arbabshirani, M. R., Fornwalt, B. K., Mongelluzzo, G. J., Suever, J. D., Geise, B. D., Patel, A. A., & Moore, G. J. (2018). Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. npj Digital Medicine, 1(1). doi:10.1038/s41746-017-0015-z https://www.nature.com/articles/s41746-017-0015-z

Capper, D., Jones, D. T. W., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., Pfister, S. M. (2018). DNA methylation-based classification of central nervous system tumours. Nature, 555(7697), 469-474. doi:10.1038/nature26000 https://www.nature.com/articles/nature26000

Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venugopal, V. K., Warier, P. (2018). Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet. doi:10.1016/s0140-6736(18)31645-3 https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(18)31645-3/fulltext

Titano, J. J., Badgeley, M., Schefflein, J., Pain, M., Su, A., Cai, M., . . . Oermann, E. K. (2018). Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med, 24(9), 1337-1341. doi:10.1038/s41591-018-0147-y https://www.nature.com/articles/s41591-018-0147-y

Pathology

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyo, D., Tsirigos, A. (2018). Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 24(10), 1559-1567. doi:10.1038/s41591-018-0177-5 https://www.nature.com/articles/s41591-018-0177-5

Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Ginneken, B., Karssemeijer, N., Litjens, G., . . . Venancio, R. (2017). Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318(22), 2199-2210. doi:10.1001/jama.2017.14585 https://jamanetwork.com/journals/jama/fullarticle/2665774

Liu, Y., Kohlberger, T., Norouzi, M., Dahl, G. E., Smith, J. L., Mohtashamian, A., Stumpe, M. C. (2018). Artificial Intelligence-Based Breast Cancer Nodal Metastasis Detection. Arch Pathol Lab Med. doi:10.5858/arpa.2018-0147-OA http://www.archivesofpathology.org/doi/10.5858/arpa.2018-0147-OA?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed

Nam, J. G., Park, S., Hwang, E. J., Lee, J. H., Jin, K. N., Lim, K. Y., . . . Park, C. M. (2018). Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology, 180237. doi:10.1148/radiol.2018180237 https://pubs.rsna.org/doi/10.1148/radiol.2018180237

Singh, R., Kalra, M. K., Nitiwarangkul, C., Patti, J. A., Homayounieh, F., Padole, A., Digumarthy, S. R. (2018). Deep learning in chest radiography: Detection of findings and presence of change. PLoS One, 13(10), e0204155. doi:10.1371/journal.pone.0204155 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204155

Steiner, D. F., MacDonald, R., Liu, Y., Truszkowski, P., Hipp, J. D., Gammage, C., Stumpe, M. C. (2018). Impact of Deep Learning Assistance on the Histopathologic Review of Lymph Nodes for Metastatic Breast Cancer. The American Journal of Surgical Pathology, Publish Ahead of Print. doi:10.1097/pas.0000000000001151 https://journals.lww.com/ajsp/Fulltext/2018/12000/Impact_of_Deep_Learning_Assistance_on_the.7.aspx

Dermatology

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. doi:10.1038/nature21056 https://www.nature.com/articles/nature21056

Haenssle, H. A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum, A., level, I. I. G. (2018). Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol, 29(8), 1836-1842. doi:10.1093/annonc/mdy166 https://www.annalsofoncology.org/article/S0923-7534(19)34105-5/fulltext

Han, S. S., Kim, M. S., Lim, W., Park, G. H., Park, I., & Chang, S. E. (2018). Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol, 138(7), 1529-1538. doi:10.1016/j.jid.2018.01.028 https://www.sciencedirect.com/science/article/pii/S0022202X18301118?via%3Dihub

Ophthalmology

Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Medicine, 1(1). doi:10.1038/s41746-018-0040-6 https://www.nature.com/articles/s41746-018-0040-6

Brown, J. M., Campbell, J. P., Beers, A., Chang, K., Ostmo, S., Chan, R. V. P., Informatics in Retinopathy of Prematurity Research, C. (2018). Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol, 136(7), 803-810. doi:10.1001/jamaophthalmol.2018.1934 https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2680579

Burlina, P., Joshi, N., Pacheco, K. D., Freund, D. E., Kong, J., & Bressler, N. M. (2018). Utility of Deep Learning Methods for Referability Classification of Age-Related Macular Degeneration. JAMA Ophthalmol. doi:10.1001/jamaophthalmol.2018.3799 https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2698945

Burlina, P. M., Joshi, N., Pekala, M., Pacheco, K. D., Freund, D. E., & Bressler, N. M. (2017). Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol, 135(11), 1170-1176. doi:10.1001/jamaophthalmol.2017.3782 https://jamanetwork.com/journals/jamaophthalmology/fullarticle/2654969

De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med, 24(9), 1342-1350. doi:10.1038/s41591-018-0107-6 https://www.nature.com/articles/s41591-018-0107-6

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), 2402-2410. doi:10.1001/jama.2016.17216 https://jamanetwork.com/journals/jama/fullarticle/2588763

Kanagasingam, Y., Xiao, D., Vignarajan, J., Preetham, A., Tay-Kearney, M.-L., & Mehrotra, A. (2018). Evaluation of Artificial Intelligence–Based Grading of Diabetic Retinopathy in Primary Care. JAMA Network Open, 1(5). doi:10.1001/jamanetworkopen.2018.2665 https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2703944

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172(5), 1122-1131 e1129. doi:10.1016/j.cell.2018.02.010 https://www.sciencedirect.com/science/article/pii/S0092867418301545?via%3Dihub

Long, E., Lin, H., Liu, Z., Wu, X., Wang, L., Jiang, J., Liu, Y. (2017). An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nature Biomedical Engineering, 1(2). doi:10.1038/s41551-016-0024 https://www.nature.com/articles/s41551-016-0024

Gastroenterology

Mori, Y., Kudo, S. E., Misawa, M., Saito, Y., Ikematsu, H., Hotta, K., Mori, K. (2018). Real-Time Use of Artificial Intelligence in Identification of Diminutive Polyps During Colonoscopy: A Prospective Study. Ann Intern Med, 169(6), 357-366. doi:10.7326/M18-0249 https://www.acpjournals.org/doi/10.7326/M18-0249

Cardiology

Madani, A., Arnaout, R., Mofrad, M., & Arnaout, R. (2018). Fast and accurate view classification of echocardiograms using deep learning. npj Digital Medicine, 1(1). doi:10.1038/s41746-017-0013-1 https://www.nature.com/articles/s41746-017-0013-1

Zhang, J., Gajjala, S., Agrawal, P., Tison, G. H., Hallock, L. A., Beussink-Nelson, L., Deo, R. C. (2018). Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation, 138(16), 1623-1635. doi:10.1161/circulationaha.118.034338 https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.118.034338

Footer

Mailing Address

The Canadian Association of Radiologists
1120-220 Laurier Ave W
Ottawa, ON K1P 5Z9
Canada

Contact

Tel.: 613 860-3111
email: [email protected]

Connect

  • Bluesky
  • Email
  • Facebook
  • LinkedIn

Disclaimer

The material provided on this website is only intended for informational purposes. The CAR is committed to maintaining the accuracy, security and confidentiality of your personal information in accordance with applicable legislation. All personal information collected by the CAR via this website or otherwise is done so in accordance with the CAR privacy policy https://car.ca/about/disclaimer-and-privacy-policy.

© Copyright 2025

X