Improving Elbow MRI Quality

Mark Pearce*, Fabio Accorsi**, David A. Leswick*
*University of Saskatchewan, Department of Medical Imaging
**University of Saskatchewan, College of Medicine

Disclosures and Conflicts of Interest

None to Declare

Acknowledgements

- University of Saskatchewan Department of Medical Imaging
- With very special thanks to Alain Lalonde

Background

- Elbow MRI is a relatively infrequently ordered and technically challenging ${ }^{1}$
- Only 32 studies at Saskatoon's Royal Univeristy Hospital over 12 months
- Painful MSK conditions can make maintaining position difficult, with potential for motion artifact
- With significant motion, there may be incorrect plane orientation, and/or exclusion of key anatomical landmarks
- Poor quality scans may lead to suboptimal assessment ${ }^{2}$

1. Anderson M (Principal Reviewer). ACR-SPR-SSR practice parameter for the performance and interpretation of magnetic resonance imaging (mri) of the elbow. Amended 2014-Resolution 39.
2. Chew ML, Giuffre BM. (2005). Disorders of the Distal Biceps Brachii Tendon. Radiographics 25:1227-1237.

Study Aim

- To determine the technical adequacy of Elbow MRI using specific and objective parameters
- If studies are inadequate, intervene to address issues

FABS

Coronal

Standard ${ }^{2,3}$

Audit Target

- Coronal and Sagittal planes should be oriented at 90 degrees to the axial
- Orientation to within +/10 degrees of 90
- Axial and FABS scans must fully include the insertion of the biceps tendon at the radial tuberosity
- 100\% inclusion

No guidelines specifying numerical values
for ideal scan coverage
2. Chew ML, Giuffre BM. (2005). Disorders of the Distal Biceps Brachii Tendon. Radiographics 25:1227-1237.
3. Sampath SC, Bredella MA. (2013). Magnetic Resonance Imaging of the Elbow: A Structured Approach.

Sports Health 51(1):34-49.

Methodology (1)
 Pre-intervention

- Using Phillips iSite Radiology PACs software, data was collected on Elbow MRI studies from the Saskatoon Health Region's Royal University Hospital
- Pre-intervention studies were examined between January 1, 2014 and August 31, 2015
- Data from both 3T and 1.5T MRIs was collected, with existing routine elbow and FABS protocols
- Exclusion criteria
- Non-routine studies

Methodology (2)
 Pre-intervention parameters

2. Orientation of SAGITTAL and CORONAL images relative to the axial plane

1. Scan coverage relative to radiohumeral joint line in all 3 planes

2. Inclusion of radial tuberosity on Axial (ABOVE) and FABS (BELOW)

Results - Orientation and Inclusion of Anatomic landmarks

- Routine protocol, n=63
- Mean sagittal vs axial orientation was 2.18 degrees from 90
- Mean coronal vs axial orientation was 0.05 degrees from 90 on average
- Axial images - radial tuberosity was fully included on 71.4\%, marginally imaged on $\mathbf{2 5 . 4 \%}$ and not included on 3.2\% of images

FABS protocol, $\mathrm{n}=17$

- 100\% of images showed full inclusion of the radial tuberosity

Results - not scanning low enough

Inclusion of Radial Tuberosity	Average Axial scan coverage below joint line(mm)	Range of Axial scan coverage below joint line(mm)
Full inclusion	58.8	$41.2-92.7$
Marginal inclusion/not included	39.0	$24.6-51.6$

Table 1: Elbow MRI Axial scan coverage below the radio-humeral joint line comparing full inclusion vs marginal/absent radial tuberosity

Technical Parameter	Average (mm)	Range (mm)	
Distance from radio-humeral joint line (mm)	COR above	64.3	$35.6-90.3$
	SAG above	62.5	$38.4-103.4$
	SAG below	66.2	$30.3-94.7$
	Ax above	62.0	$41.1-107.8$
	Ax below	49.8	$33.5-87.8$

Table 2: Tri-plane elbow MRI scan coverage with respect to the radio-humeral joint line for routine elbow MRI protocol

Audit Assessment

- Coronal and Sagittal planes
- Acceptable orientation should be oriented at 90 degrees to the axial
- FABS scans must fully include the insertion of the biceps tendon at the radial tuberosity
- Axial scans must fully include the insertion of the biceps tendon at the radial tuberosity
- Acceptable for FABS
- Unacceptable for axial series
-Requires intervention and reassessment

Methodology Intervention

- Results, including inadequate axial coverage, were presented by the chief technologist at a technologist staff meeting
- An online educational survey was developed for MRI technologists pertaining to:
- Identification of key anatomical landmarks e.g. radial tuberosity, biceps tendon, radio-humeral joint line
- Recommended scanning technique including ideal plane orientation and coverage
- i.e. sagittal at 90 degrees to axial plane and coverage to include radial tuberosity
- Anonymous feedback was solicited

Methodology
 Post-intervention

- After intervening, Pre-intervention methods were repeated on data from September 2015
- March 15, 2016
- Data was compared to prior results

Intervention - Educational Survey

- Ten question online educational survey was developed for MRI technologists to provide real time feedback on:

1) basic elbow MRI anatomy,
2) scan technique, and
3) solicit feedback
-Unfortunately, limited participation by technologists with $n=3$

- Only 66% of participants correctly identified the radial tuberosity on coronal scout ($\mathrm{n}=3$)
- 66% of participants chose a field of view that transected the radial tuberosity on coronal scout
- To ensure inclusion of the radial tuberosity and biceps tendon on future scans, $3 / 3$ Technologists preferred:
- Coverage of at least 2 distal images below the radial tuberosity OR
- 100 mm of standardized coverage centered on the radial neck

Sample Question: Identify the Radial tuberosity

1. X
2. X
3. X
4. ©

Re-audit Results - Anatomic Inclusion

Inclusion of Radial Tuberosity (Routine Protocol)	Pre-intervention, $\mathrm{n}=63$	Post-intervention, $\mathrm{n}=13$		
Full inclusion	71.4%	(45)	84.6%	(11)
Marginal inclusion	25.4%	(16)	7.7%	(1)
Exclusion	3.2%	(2)	7.7%	(1)

Table 3: Inclusion of radial tuberosity on Routine Protocol elbow MRI before and after intervention

- Sagittal vs axial orientation was 2.54 degrees from 90 on average
- Coronal vs axial orientation was 0.03 degrees from 90 on average
- 100% of FABS images again showed full inclusion of the radial tuberosity

Figure 1: Graphical depiction of post-intervention re-audit results over time

Discussion - Preaudit and Intervention

- Coronal and sagittal plane orientation was acceptable
- FABS imaging was acceptable
- Inclusion of the radial tuberosity did not meet target even after intervention
- 2 interventions
- Educational survey - potentially beneficial, but limited uptake
- Results were discussed at staff meeting

Discussion - Reaudit and future directions

- Initial improvement to 100% inclusion, but overall, postintervention results showed that 15.4\% of axial elbow MRIs had marginal inclusion/absence of radial tuberosity (vs. 28.6\% pre-intervention)
- Possible reasons might include:
- People forget overtime and fall back into bad habits
- Limited participation in educational survey
- Inadequate knowledge of anatomy - importance of biceps tendon, endpoint of radial tuberosity
- No standardized protocol calling for xx mm of coverage
- Next step:
- Protocol to be modified specifying standard coverage of 50 mm centered on the radial neck for axial elbow MRI scans

Conclusions

- MRI quality was good, except for inclusion of radial tuberosity on axial images
- Following intervention, there was better inclusion on axial images
- While the intervention was beneficial, it may need to be periodically repeated for greatest benefit
- Elbow MRI protocols should be standardized e.g. specifying at least 50 mm of coverage above and below the radial neck on axial

