Cardiac CT in the ED – From a Payer Perspective

Ricardo C. Cury, MD
Past-President – Society of Cardiovascular CT
Chairman of Radiology and Director of Cardiac Imaging
Baptist Health of South Florida and Miami Cardiac and Vascular Institute
Disclosure Information

- Research grant – GE Healthcare
- Consultant – GE Healthcare and Novartis
Goals of Triage

• Identify patients with AMI
• Identify patients with unstable angina
• Identify patients at high risk of cardiovascular complications
 – resource utilization in hospital
 • CCU vs. monitored vs. floor beds
• Identify patients safe for ED release
 – need for treatment
Perspective

- Cardiologist
- Primary Care Physician
- Emergency Physician
- Radiologist
- Payor
- Patient
- Lawyers
- Society
Why Do More?

- The missed AMI rate is inversely proportional to the admission rate for ED chest pain patients

Kontos MC & Jesse RL. *Am J Cardiol* 2000;85:32B-39B
Initial Impression = “Noncardiac Pain”

- itrACS
- 17,737 patients enrolled
- Conclusion: Even patients thought to have noncardiac pain can suffer adverse cardiac events, especially if risk factors are present

2.8% had adverse cardiac events (infarction, revascularization, or death) within 30 days

How can coronary CTA reduce costs?

- Faster diagnosis
- Reducing ER length of stay
- Reducing unnecessary admissions and ICA
- Reducing complementary tests in 30 day follow up
CTA IN THE ED – RANDOMIZED TRIALS

<table>
<thead>
<tr>
<th>CENTERS</th>
<th>TIMI Risk</th>
<th>N</th>
<th>LOS/ Time to Diagnosis</th>
<th>30-days MACE</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT – STAT(^1)</td>
<td>TIMI 0 to 4</td>
<td>699 (1:1)</td>
<td>2.9h vs 6.3h</td>
<td>0.8% vs 0.4%</td>
<td>$2,137 vs $3,458</td>
</tr>
<tr>
<td>ACRIN-PA(^2)</td>
<td>TIMI 0 to 2</td>
<td>1370 (2:1)</td>
<td>18 vs 24.8h (p<0.001)</td>
<td>Zero</td>
<td></td>
</tr>
<tr>
<td>ROMICAT 2(^3)</td>
<td>Low/int.risk</td>
<td>985 (1:1)</td>
<td>23 vs 30.8h (p=0.0002)</td>
<td>0.4% vs 1.2%</td>
<td>Cost savings of 10 to 20%</td>
</tr>
<tr>
<td>CT-COMPARE(^4)</td>
<td>Low/int.risk</td>
<td>562</td>
<td>13.5 vs 19.7h (p<0.001)</td>
<td>Zero</td>
<td>$2,193 vs $2,704</td>
</tr>
</tbody>
</table>

➢ Coronary CTA is faster, cheaper and safe!

1- Goldstein JA et al. JACC 2011 Sept;27;58:1414-22
4- Hamilton-Craig C et al. – Int J Cardiol 2014 Dec;177(3):867-73
<table>
<thead>
<tr>
<th></th>
<th>CTA</th>
<th>SOC</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Dx (hrs)</td>
<td>2.9</td>
<td>6.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Cost of care ($)</td>
<td>2,137</td>
<td>3,458</td>
<td><0.001</td>
</tr>
<tr>
<td>Radiation (mSv)</td>
<td>10.8</td>
<td>15</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Coronary CTA is cheaper and faster than SOC (nuclear medicine)!

Prospective, Randomized Trial of Coronary CT Angiography and Exercise ECG in Emergency Department Chest Pain (CT-COMPARE)

Christian Hamilton-Craig MBBS, PhD, FSCCT1,2,3, Mark Hansen FRANZCR1, Allison Fifoot FACEM1, Matthew Pincus MBBS, FRACP1, Kathryn Arnett1, Darren L. Walters MBBS, FRACP1,2, Kelley R. Branch MD, MSc, FACC3

1. Prince Charles Hospital, Heart & Lung Institute, Brisbane, Australia,
2. University of Queensland, Brisbane, Australia
3. University of Washington, Seattle, WA, USA
CT-COMPARE

<table>
<thead>
<tr>
<th></th>
<th>CTA</th>
<th>EX EKG</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Stay (hrs)</td>
<td>13.5</td>
<td>19.7</td>
<td>0.003</td>
</tr>
<tr>
<td>Cost of care ($) - total</td>
<td>2193</td>
<td>2704</td>
<td><0.001</td>
</tr>
<tr>
<td>Cost of care ($) - ED</td>
<td>1669</td>
<td>2459</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Coronary CT angiography is faster and less expensive.
Length of Stay (hours)

- CTCA: 13.5 (11.2-15.7) Median: 7.6
- ExECG: 20.5 (17.9-23.1) Median: 16.5

P < 0.001
Total Hospital Cost ($AUD)

- CTCA: $2,193 ($1997,2389)
- ExECG: $2,704 ($2555,2853)

P<0.001

*$AUD=0.92 $USD
CT COMPARE – IJC 2014

- Mean radiation exposure for CCTA was 3.8 mSv

<table>
<thead>
<tr>
<th>Trial arm</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
<th>ROC AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExECG</td>
<td>83% (36,100)</td>
<td>91% (86,94)</td>
<td>19% (6,38)</td>
<td>100% (97,100)</td>
<td>0.87 (0.70, 100)</td>
</tr>
<tr>
<td>CTCA>50% stenosis</td>
<td>100% (82,100)</td>
<td>94% (91,97)</td>
<td>51% (34,69)</td>
<td>100% (99,100)</td>
<td>0.97† (0.96, 0.99)</td>
</tr>
<tr>
<td>CTCA>70% stenosis</td>
<td>94% (73,100)</td>
<td>99% (98,100)</td>
<td>90% (67,99)</td>
<td>100% (98,100)</td>
<td>0.97* (0.92, 100)</td>
</tr>
</tbody>
</table>

†p=0.22, *p=0.26 compared to ExECG.
All data are expressed as % (95% CI)
CTA IN THE ED – IMPLEMENTATION IN CLINICAL PRACTICE

<table>
<thead>
<tr>
<th>CENTERS</th>
<th>TIMI Risk</th>
<th>N</th>
<th>LOS/ Time to Diagnosis</th>
<th>30-days MACE</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baptist Health of South Florida¹</td>
<td>4 Hospitals</td>
<td>529</td>
<td>14 vs 28.8h (p<0.001)</td>
<td>0.2%</td>
<td>> $500 Reduction per patient</td>
</tr>
<tr>
<td>Stony Brook Univ. Medical Center²</td>
<td>1 Hospital</td>
<td>1788 (1:1)</td>
<td>7.7 vs 11.5h (p<0.001)</td>
<td>0.33% vs 0.67%</td>
<td>1.3% vs 3.6% ED return</td>
</tr>
<tr>
<td>San Antonio Military Medical Center³</td>
<td>1 Hospital</td>
<td>367</td>
<td>5.8 vs 25h (p<0.001)</td>
<td>Low</td>
<td>$182K vs $685K</td>
</tr>
</tbody>
</table>

> Coronary CTA is faster, cheaper and safe!

1- Cury RC et al. – AJR 2013 Jan;200-57-65
2- Poon M et al. JACC 2013 May
3- Jones RL et al. JCCT 2014 Sep-Oct;8(5):375-83
CTA REDUCES HEALTHCARE RESOURCE UTILIZATION

<table>
<thead>
<tr>
<th></th>
<th>CTA (N=894)</th>
<th>Standard of Care (N=894)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission Rate to the Hospital</td>
<td>14%</td>
<td>40%</td>
<td><0.001</td>
</tr>
<tr>
<td>Length of Stay in the ED</td>
<td>7.7 hours</td>
<td>11.5 hours</td>
<td>0.001</td>
</tr>
<tr>
<td>30 days MACE</td>
<td>0.3%</td>
<td>0.7%</td>
<td>0.316</td>
</tr>
<tr>
<td>Returning to the ED in 30 days with CP</td>
<td>5 (1%)</td>
<td>20 (2%)</td>
<td>0.003</td>
</tr>
<tr>
<td>Cardiac cath without revascularization</td>
<td>8 (1%)</td>
<td>27 (3%)</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Current Evidence

Trials:	N=
CT-STAT | Goldstein JACC 2011 | 699 |
ACRIN-PA | Litt NEJM 2012 | 1,370 |
ROMICAT | Hoffmann NEJM 2012 | 1,000 |

Efficiency: 3,069

- Time to Diagnosis Reduced 44-77% (-7.7 h; -12.7 to 2.7 h)
- Cost Savings (-$680; -$1,060 to -$270)
- National Health Service Systematic Review - Cost-effective strategy for Troponin-neg pts

Outcomes:

- Near-Term - ACS Re-Admission OR: 1.2 (0.7-2.2)
- Long-Term (~4 y follow-up) of 506 D/C pts:
 - 1% readmitted for CP AND 0% Revascularization, ACS, or Death

IMPLEMENTATION IN CLINICAL PRACTICE
VALUE IN RADIOLOGY

Value = Patient Activation + Clinical Accuracy + Coordinated Care

- **Patient safety**
- **Understanding of scan objective**
- **Delivery of results**
- **Quality of image**
- **Accuracy of reads**
- **Referrer comprehension**
- **Seamless downstream care**
- **Overall cost, outcomes**
Five Levels for Chest Pain

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STEMI or new LBBB with ischemic symptoms</td>
</tr>
<tr>
<td>2</td>
<td>Non-STEMI or unstable angina, typical anginal symptoms with ST-segment depression, ischemic T-wave inversion, CHF or hemodynamic instability with chest pain</td>
</tr>
<tr>
<td>3</td>
<td>Moderate to high risk of ACS (TIMI > 2): anginal pain lasting < 20 minutes or atypical chest pain. ECG normal or nondiagnostic; cardiac enzymes negative.</td>
</tr>
<tr>
<td>4</td>
<td>Low risk of ACS (TIMI ≤ 2): anginal pain lasting < 20 minutes or atypical chest pain. ECG normal or nondiagnostic; cardiac enzymes negative.</td>
</tr>
<tr>
<td>5</td>
<td>Non-cardiac chest pain</td>
</tr>
</tbody>
</table>
CASE – ED 33 TIMI ZERO

41 y/o male presenting with CP and left arm pain/ Two negative Trop/ NI EKG
<table>
<thead>
<tr>
<th>Category</th>
<th>N</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>317</td>
<td>59.9%</td>
</tr>
<tr>
<td>1-49%</td>
<td>151</td>
<td>28.5%</td>
</tr>
<tr>
<td>50-69%</td>
<td>25</td>
<td>4.7%</td>
</tr>
<tr>
<td>>70%</td>
<td>36</td>
<td>6.8%</td>
</tr>
</tbody>
</table>

Cury RC et al. – AJR 2013 Jan;200:57-65
CTA N=529

0 N=317 (59.9%)

1-49% N=151 (28.5%)

50-69% N=25 (4.7%)

>70% N=36 (6.8%)

MIBI Cath

N = 8 N = 0

MACE = 0

Cury RC et al. – AJR 2013 Jan;200:57-65
CTA \(N=529 \)

<table>
<thead>
<tr>
<th>Percentile</th>
<th>N</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>317</td>
<td>(59.9%)</td>
</tr>
<tr>
<td>1-49%</td>
<td>151</td>
<td>(28.5%)</td>
</tr>
<tr>
<td>50-69%</td>
<td>25</td>
<td>(4.7%)</td>
</tr>
<tr>
<td>>70%</td>
<td>36</td>
<td>(6.8%)</td>
</tr>
</tbody>
</table>

MIBI

- Cath
 - N = 8
 - MACE = 0
 - <50%: 8
 - 50-70%: 1

Cury RC et al. – AJR 2013 Jan;200:57-65
CTA N=529

<table>
<thead>
<tr>
<th>Category</th>
<th>MIBI</th>
<th>Cath</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N=8</td>
<td>N=0</td>
<td>8</td>
</tr>
<tr>
<td>1-49%</td>
<td>N=6</td>
<td>N=3</td>
<td>6</td>
</tr>
<tr>
<td>50-69%</td>
<td>N=9</td>
<td>N=7</td>
<td>9</td>
</tr>
<tr>
<td>>70%</td>
<td>N=36</td>
<td>N=36</td>
<td>36</td>
</tr>
</tbody>
</table>

MIBI Cath

- **MACE = 0**
- **MACE = 1**
- **5 PCIs**

Cury RC et al. – AJR 2013 Jan;200:57-65
CTA N=529

0
N=317
(59.9%)

1-49%
N=151
(28.5%)

50-69%
N=25
(4.7%)

>70%
N=36
(6.8%)

MIBI Cath

N = 8 N = 0

— 8
+ 0

MACE = 0

N = 6 N = 3

— 6
+ 0
+ 1
50 - 70%

MACE = 1

N = 9 N = 7

— 9
+ 0
+ 6
>50 %

5 PCIs

N = 23

— 2
+ 7
+ 21
50-70%
>70 %

MACE = 3

6 Cath > 70%

Cury RC et al. – AJR 2013 Jan;200:57-65
DO – Monitor LOS

Length of stay (LOS)

2009

28.8h

2010

14.0h

51%

Cury RC et al. – AJR 2013 Jan;200:57-65
SCCT guidelines on the use of coronary computed tomographic angiography for patients presenting with acute chest pain to the emergency department: A Report of the Society of Cardiovascular Computed Tomography Guidelines Committee

Gilbert L. Raff MDa,*, Kavitha M. Chinnaiyan MDa, Ricardo C. Cury MDb, Mario T. Garcia MDc, Harvey S. Hecht MDd, Judd E. Hollander MDe, Brian O’Neil MDf, Allen J. Taylor MDg, Udo Hoffmann MDh

<table>
<thead>
<tr>
<th>Risk category</th>
<th>Suspected diagnosis</th>
<th>Appropriate diagnostic strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 5</td>
<td>STEMI</td>
<td>ICA</td>
</tr>
<tr>
<td>Level 4</td>
<td>NSTEMI, UAP</td>
<td>ICA</td>
</tr>
<tr>
<td>Level 3</td>
<td>High Risk (e.g., TIMI >4)</td>
<td>Functional assessment and/or admission</td>
</tr>
<tr>
<td>Level 1–2</td>
<td>Low-intermediate risk (e.g., TIMI 0–4)</td>
<td>Coronary CTA or functional assessment</td>
</tr>
<tr>
<td>Level 0</td>
<td>Non-cardiac chest pain</td>
<td>CXR, chest CTA (PE, aortic dissection), GI work-up, and so forth</td>
</tr>
</tbody>
</table>

CTA, CT angiography; CXR, chest radiography; GI, gastrointestinal; ICA, invasive coronary angiography; NSTEMI, non-ST segment elevation myocardial infarction; PE, pulmonary embolism; STEMI, ST elevation myocardial infarction; TIMI, thrombolysis in myocardial infarction risk score.
Coronary CTA – Reporting and Management

Degree of coronary stenosis

- 0%
- 40-50%
- 70%
- 100%

Discharge from ED

- Mild

- Moderate

- Severe

Discharge from ED and OP consult with Cardiologist

Stress Myocardial Perfusion (NM) + FFR

Cardiac Cath Lab

Cury RC et al. JNC 2011:18;331-41
SCCT guidelines on the use of coronary computed
tomographic angiography for patients presenting
with acute chest pain to the emergency
department: A Report of the Society of
Cardiovascular Computed Tomography Guidelines
Committee

Gilbert L. Raff MD, Kavitha M. Chinnaiyan MD, Ricardo C. Cury MD,
Mario T. Garcia MD, Harvey S. Hecht MD, Judd E. Hollander MD,
Brian O’Neil MD, Allen J. Taylor MD, Udo Hoffmann MD

| Table 10 — Sample management recommendations to ED physicians. |
|-----------------|---|
| Degree of maximal coronary stenosis | Management recommendation |
| 0%–25% | ACS unlikely; discharge is reasonable. Follow-up for minimal CAD at physician discretion |
| 26%–49% | ACS unlikely; discharge is reasonable. Outpatient follow-up recommended for preventive measures |
| 50%–69% | ACS possible; further evaluation indicated before discharge |
| >70% | ACS likely; admit for further evaluation |

ACS, acute coronary syndrome, CAD, coronary artery disease.
GOAL: Standardized reporting system for CCTA to improve communication to referring physicians

Collaboration of SCCT, ACR, ACC and NASCI

Classification should be applied on a per-patient basis for the highest grade stenosis

Specific recommendations are provided to guide patient management in a clear and consistent fashion

CAD-RADS will provide the framework to standardize education, research, peer-review, quality assurance and ultimately result in improvement in patient care
CAD RADS - STENOSIS SEVERITY

Table 1 - SCCT grading scale for stenosis severity:

<table>
<thead>
<tr>
<th>Stenosis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>No visible stenosis</td>
</tr>
<tr>
<td>1-24%</td>
<td>Minimal stenosis</td>
</tr>
<tr>
<td>25-49%</td>
<td>Mild stenosis</td>
</tr>
<tr>
<td>50-69%</td>
<td>Moderate stenosis</td>
</tr>
<tr>
<td>70-99%</td>
<td>Severe stenosis</td>
</tr>
<tr>
<td>100%</td>
<td>Occluded</td>
</tr>
</tbody>
</table>

* All vessels greater than 1.5mm in diameter should be graded for stenosis severity and CAD-RADS classification will apply for these vessels. Conversely, CAD-RADS will not apply for smaller vessels (<1.5mm in diameter).

* CAD-RADS classification should be applied on a per-patient basis for the highest-grade stenosis.
CAD RADS - STABLE CHEST PAIN

<table>
<thead>
<tr>
<th>CAD-RADS</th>
<th>Degree of maximal coronary stenosis</th>
<th>Interpretation</th>
<th>Further Cardiac Investigation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD-RADS 0</td>
<td>0% (No plaque or stenosis)</td>
<td>Documented absence of CAD*</td>
<td>None</td>
<td>- Reassurance. Consider other non-atherosclerotic causes of chest pain</td>
</tr>
<tr>
<td>CAD-RADS 1</td>
<td>1-24% - Minimal stenosis or plaque with no stenosis**</td>
<td>Minimal non-obstructive CAD</td>
<td>None</td>
<td>- Consider preventive therapy and risk factors modification per guideline-directed care***</td>
</tr>
<tr>
<td>CAD-RADS 2</td>
<td>25-49% - Mild stenosis</td>
<td>Mild non-obstructive CAD</td>
<td>None</td>
<td>- Consider more aggressive preventive therapy and risk factors modification, particularly for patients with non-obstructive plaque in multiple segments.</td>
</tr>
<tr>
<td>CAD-RADS 3</td>
<td>50-69% stenosis</td>
<td>Moderate stenosis</td>
<td>Consider functional assessment</td>
<td>- Consider symptom-guided anti-ischemic and preventive pharmacotherapy as well as risk factors modification per guideline-directed care***</td>
</tr>
<tr>
<td>CAD-RADS 4</td>
<td>A - 70-99% stenosis or B - Left main >50% or 3-vessel obstructive disease</td>
<td>Severe stenosis</td>
<td>A: Consider ICA**** or functional assessment</td>
<td>- Consider symptom-guided anti-ischemic and preventive pharmacotherapy as well as risk factors modification per guideline-directed care***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B: ICA is recommended</td>
<td>- Other treatments should be considered per guideline-directed care***</td>
</tr>
<tr>
<td>CAD-RADS 5</td>
<td>100% (total occlusion)</td>
<td>Total coronary occlusion</td>
<td>Consider ICA or functional/ viability assessment</td>
<td>- Consider symptom-guided anti-ischemic and preventive pharmacotherapy as well as risk factors modification per guideline-directed care***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Other treatments (including options of revascularization) should be considered per guideline-directed care***</td>
</tr>
<tr>
<td>CAD-RADS N</td>
<td>Non-diagnostic study</td>
<td>Obstructive CAD cannot be excluded</td>
<td>Additional or alternative evaluation may be needed</td>
<td>- Consider symptom-guided anti-ischemic and preventive pharmacotherapy as well as risk factors modification per guideline-directed care***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Other treatments (including options of revascularization) should be considered per guideline-directed care***</td>
</tr>
</tbody>
</table>
CAD RADS - ACUTE CHEST PAIN

Table 3. CAD-RADS Reporting and Data System for patients presenting with acute chest pain, negative first troponin, negative or non-diagnostic electrocardiogram and low to intermediate risk (TIMI risk score < 4) (emergency department or hospital setting).

<table>
<thead>
<tr>
<th>CAD-RADS</th>
<th>Degree of maximal coronary stenosis</th>
<th>Interpretation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>ACS* highly unlikely</td>
<td>- No further evaluation of ACS is required. Consider other etiologies.</td>
<td></td>
</tr>
<tr>
<td>1-24%**</td>
<td>ACS highly unlikely</td>
<td>- Consider evaluation of non-ACS etiology, if normal troponin and no ECG change. - Consider referral for out-patient follow-up for preventive management of coronary atherosclerosis and risk factors modification.</td>
<td></td>
</tr>
<tr>
<td>25-49%***</td>
<td>ACS unlikely</td>
<td>- Consider evaluation of non-ACS etiology, if normal troponin and no ECG change. - Consider referral for out-patient follow-up for preventive management of coronary atherosclerosis and risk factors modification. - If clinical suspicion of ACS is high or if high-risk plaque features are noted in the stenosis, consider hospital admission with cardiology consultation.</td>
<td></td>
</tr>
<tr>
<td>50-69%</td>
<td>ACS possible</td>
<td>- Consider hospital admission with cardiology consultation, functional testing and/or ICA**** for evaluation and management. - Recommendation for anti-ischemic and preventive management should be considered as well as risk factor modifications. Other treatments should be considered if presence of hemodynamic significant lesion.</td>
<td></td>
</tr>
<tr>
<td>A - 70-99% or B - Left main >50% or 3-vessel obstructive disease</td>
<td>ACS likely</td>
<td>- Consider hospital admission with cardiology consultation and further evaluation with ICA and revascularization is appropriate. - Recommendation for anti-ischemic and preventive management should be considered as well as risk factor modifications.</td>
<td></td>
</tr>
<tr>
<td>100% (Total occlusion)</td>
<td>ACS very likely</td>
<td>- Consider expedited ICA on a timely basis and revascularization if appropriate. - Recommendation for anti-ischemic and preventive management should be considered as well as risk factor modifications.</td>
<td></td>
</tr>
<tr>
<td>Non-diagnostic study</td>
<td>ACS cannot be excluded</td>
<td>Additional or alternative evaluation for ACS is needed</td>
<td></td>
</tr>
</tbody>
</table>
CAD-RADS classification should be applied on a per-patient basis for the highest-grade stenosis

* CAD – coronary artery disease

** CAD-RADS 1 – This category should also include the presence of plaque with positive remodeling and no evidence of stenosis

*** Guideline-directed care per ACC Stable Ischemic Heart Disease Guidelines (Fihn et al. JACC 2012)

**** ICA – invasive coronary angiography. ICA is recommended for CAD-RADS 4B.

MODIFIERS: If more than one modifier is present, the symbol "/" (slash) should follow each modifier in the following order:

i. First: modifier S (stent)
ii. Second: modifier G (graft)
iii. Third: modifier V (vulnerability)
NO EVIDENCE OF PLAQUE OR STENOSIS
MINIMAL NON-OBSTRUCTIVE STENOSIS = 1-24%
MILD NON-OBSTRUCTIVE STENOSIS = 25-49%
MODERATE STENOSIS = 50-69%
SEVERE STENOSIS = 70-99%

1VD - Single-vessel Disease
TRIPLE-VEssel SEVERE STENOSIS = 70-99%
LEFT MAIN STENOSIS >50%
TOTAL OCCLUSION = 100%
NON-DIAGNOSTIC – MOTION ARTIFACTS
Conclusions

- Coronary CTA is faster when compared to SOC and decreases LOS
- CCTA leads to less admissions to the Hospital and decrease complementary tests in 30 days
- Most studies demonstrate a decrease in cost with a CCTA Strategy in the ED
- Value in Radiology: Clinical Pathway + Accurate Readings + Guide management in care
THANK YOU!
55 y/o male with CP + HPT + History of TIA

CASE – ED 13 TIMI ZERO

CTA – Mid RCA = 90%

CTA – Mid LCX = 50-70%
53 y/o Male with CP and prior history of smoking. Normal ECG and Troponin
59 y/o Female with CP to the ED, worse while climbing the stairs

CASE – Bonus 14 TIMI ZERO

CTA - LAD subtotal occlusion

ICA - LAD subtotal occlusion

Anomalous RCA

ICA – After LAD stent placement