The Utility of Cardiac Computed Tomography in Evaluating Left Ventricular Diastolic Dysfunction

Anto Sedlic, Elena P. Scali, Savvas Nicolaou, John R. Mayo

Department of Radiology, University of British Columbia, Vancouver, Canada
Disclosures

• The authors have nothing to disclose
Background: Diastolic Dysfunction

- Definition: Slow/incomplete LV relaxation, reduced compliance or increased stiffness
 - Accounts for ~40-50% of all cases of heart failure

- Non-specific presentation
 - Asymptomatic or overt heart failure
 - Normal or abnormal systolic function
 - Cardiac CTA often ordered to exclude CAD

- Increasing prevalence of diastolic dysfunction and diastolic heart failure
 - Unlike patients with systolic dysfunction, there has been no significant survival improvement over time

Assessment of Diastolic Dysfunction

• Involves quantification of abnormal LV volumes and pressures

• Left heart catheterization
 – Gold standard
 – Invasive, radiation exposure

• Transthoracic echocardiography
 – Most common first-line modality
 – Excellent temporal resolution
 – Limited by body habitus, inter-observer variability

• Cardiac MRI
 – Evaluation of LA size and transmitral flow

Caudron et al. Radiographics. 2011;31(1):239-59
Purpose

• To evaluate the utility of retrospective cardiac CTA in assessment of diastolic dysfunction
 – Utilization of routinely reported functional data
 – Cost of increased radiation dose

• Compare patients with diastolic dysfunction to normal controls
 – LV volume versus time curve in diastole and its first order derivative, \(LV \frac{d(V)}{d(t)} \)
 – Contribution of LA contraction to LV end diastolic volume
Study Design: Methods

• Retrospective cardiac CTA studies performed on Siemens Somatom Definition Flash scanner (Siemens, Erlangen, Germany)
 – Cardiac CTA performed over 10 month period, July 2013-April 2014
 – Echocardiography performed within 6 months of cardiac CTA

• Indications for retrospective cardiac CT:
 – High heart rate and contraindication or lack of response to rate control
 – Atrial fibrillation or arrhythmia despite rate control

• Study population: 20 patients with diastolic dysfunction
 • Indications: atypical chest pain(9), rule out CAD (5), SOBOE (4), non-diagnostic stress test (2)

• Control population: 13 normal controls
Study Design: Methods

• Exclusion criteria:
 – Systolic dysfunction
 – Mitral regurgitation
 – Atrial fibrillation

• Studies interpreted by fellowship-trained chest radiologist
 – Reader blinded to echocardiography findings

• LV volumes determined by syngo.via (Siemens Healthcare, Erlangen, Germany)
 – Automated post-processing software
Volume-Time Curve

- LV lumen traced on short axis, horizontal and vertical long axis planes

- LV volume plotted over cardiac cycle
 - 10% intervals
 - 41-60 ms
 - First order derivative (d)v/(d)t calculated
Volume-Time Curve

• **Early diastolic filling**
 – **Volume vs time curve**
 • Steepest slope volume vs time curve following systole (yellow arrows)
 – \(\frac{d(V)}{d(t)} \)
 • Greatest first order derivative

• **Atrial filling contribution**
 – **Volume vs time curve**
 • Late diastolic volume increase (blue arrows)
Diastolic Dysfunction: VT Curve

Slope of VT curve used to determine peak diastolic flow in diastolic dysfunction patients
Diastolic Dysfunction: Mean $d(V)/d(t)$

Filling rate is fastest at the peak of the $d(v)/d(t)$ curve.
Normal Controls: VT Curve

Slope of VT curve used to determine peak diastolic flow in normal controls
Normal Controls: Mean $d(V)/d(t)$

Higher peak filling rate achieved in normal controls

$D(V)/d(t)$
ml/s

Time (ms)
Results: Peak Early Diastolic Filling Rate

• Peak early diastolic filling rate
 – Diastolic dysfunction: 218.4 ml/sec (95% CI: 199.7 – 237.5)
 – Normal controls: 308.6 ml/sec (95% CI: 278 – 338.6)

 – Suggests impairment of early diastolic filling in patients with diastolic dysfunction, as reflected by slower peak filling rates
• Diastolic dysfunction
 – Flatter slope of early diastolic filling
 – More variable VT curves

• Normal controls:
 – Steeper slope of early diastolic filling
 – More uniform VT curves

• Left atrial contribution to late diastolic filling
 – Initially hypothesized that diastolic dysfunction patients may have greater left atrial contribution
 – Not significantly different between the groups
 – May be related to small sample, variability between patients
 – Late diastole and atrial filling time varied with cardiac cycle length
Limitations

- Small sample size
- Cardiac CTA limited to assessment of LV filling rate
- Correlation with echocardiography, not left heart catheterization (gold standard)
- Limited ability to evaluate moderate to severe diastolic dysfunction due to pseudo-normalization
Conclusions

• Retrospective cardiac CTA generates volume-time curves, which allow for evaluation of abnormal LV filling in early diastole and identification of diastolic dysfunction

• Further evaluation is required
 – Establish normal reference ranges
 – Grade severity of diastolic dysfunction

• Validation of automated volume measurement, potential future applications
References

• Caudron et al. Radiographics. 2011;31(1):239-59
Thank you

Questions?

anto.sedlic@vch.ca