To Core or Not to Core: The number of core samples obtained during computed tomography guided lung biopsy does not increase the rate of complications

Coret, A., Athreya, S., Schneider, L., Finley, C., Schieman, C., Hanna WC, Voss, M., Boylan, C., Shargall, Y.

CAR-ASM 2015 | May 28-30 | Montréal, QC
Disclosures

• No conflict of interest to declare on behalf of the presenter and/or research team
Introduction: Lung Cancer

• Lung cancer is the second most prevalent cancer in Canada, and is the country’s leading cause of cancer-related death among men and women (Canadian Cancer Society, 2013)

• Early and accurate diagnosis is the key for the optimal treatment of lung cancer patients

• Suspicious lung lesions can be histologically sampled via a percutaneous needle biopsy
Introduction: CT-TTNB

- Computed tomography-guided transthoracic needle biopsy (CT-TTNB) of the lung is considered a safe and effective diagnostic tool for the sampling of potentially malignant lesions.

- The procedure has inherent risk factors, ranging from mild to severe complications, and in rare cases, death.
Introduction: CT-TTNB Imaging

Upper two images: LUL lung lesion; prone views; 19-G coaxial needle in situ

Lower two images: RUL lung lesion; decubitus position; 19-G coaxial needle in situ

Figure 1: CT-guided lung lesion biopsy SJHH, Hamilton
Introduction: Possible Complications

Minor:
- Pneumothorax
- Thoracostomy tube placement
- Minor hospitalization (observation or nominal treatment)

Major:
- Air embolism
- Hemoptysis requiring hospitalization or specific therapy
- Chest tube placement requiring prolonged admission, pleurodesis, or catheter exchange
- Death

Source: SIR-ACR Standards of Practice (2010)
SIR-ACR Guidelines

Table 1: Complication rate guidelines and recommended QI thresholds

<table>
<thead>
<tr>
<th></th>
<th>Complication</th>
<th>Complication rate range (%)</th>
<th>Suggested QI Threshold (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>12-45</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Thoracostomy tube placement</td>
<td>2-15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Major</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air embolism</td>
<td>0.06-0.07</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>Hemoptysis requiring therapy</td>
<td>0.5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Thoracostomy tube placement requiring therapy</td>
<td>1-2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Source: SIR-ACR Standards of Practice (2010)
Objectives

• To examine whether certain patient demographic or clinical factors are associated with complications in CT-guided lung biopsies

• To compare the experience at SJHH with accepted ACR-SIR guidelines for quality assurance

• To make possible recommendations for an improved standard of care
Methods

• Retrospective cohort analysis of all CT-TTNB conducted at St. Joseph’s Healthcare Hamilton (SJHH) over a 12-month period (July 2011- June 2012)
• Patient data abstracted from electronic medical records and Vmax Encore PFT System database
• Coding for complication severity was based on SIR-ACR guidelines
• Univariate analysis was used for comparison; continuous variables described using independent t-test and categorical using chi square
Methods: Dataset Components

• Demographic Information
 ▫ Sex, age, diagnosis of COPD, FEV1 and DLCO values

• Procedural Details
 ▫ # of tissue samples obtained, immediate complication events, follow-up details such as hospital admission for observation, date of discharge, need for additional therapies

• Clinical Information
 ▫ cTNM staging, lesion size and location, final pathology
Results: Descriptive Statistics

- 304 patients
 - 49% male; mean age 68.5 ± 11.4 [range 22-89]
 - 26.6% (81/304) with COPD

- 93.4% of biopsies (284/304) were diagnostic

- Mean number of tissue samples obtained: 3.3 ± 1.0 [range 1-8]

- Mean lesion size (mm): 32.3 ± 22.7 [range 5-160]
Results

<table>
<thead>
<tr>
<th>Clinical Staging (AJCC 7th Edition)</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>28.8%</td>
</tr>
<tr>
<td>Stage IA/IB</td>
<td>20.7%</td>
</tr>
<tr>
<td>Stage IIA/IIB</td>
<td>23.8%</td>
</tr>
<tr>
<td>Stage IIIA/IIIB</td>
<td>14.1%</td>
</tr>
<tr>
<td>Stage IV</td>
<td>8.1%</td>
</tr>
<tr>
<td>Metastatic Disease</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Pathology

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined non-small cell lung cancer</td>
<td>10.1%</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>37.5%</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>12.6%</td>
</tr>
<tr>
<td>Bronchioalveolar carcinoma</td>
<td>1.1%</td>
</tr>
<tr>
<td>Benign diagnosis</td>
<td>20.2%</td>
</tr>
<tr>
<td>Non-diagnostic</td>
<td>7.2%</td>
</tr>
<tr>
<td>Not specified</td>
<td>11.2%</td>
</tr>
</tbody>
</table>
Results

- Complications:
 - Post-biopsy pneumothorax: 32.9% (100/304)
 - Chest tube insertion: 5.9% (18/304)
 - Self-limiting hemoptysis: 5.9% (18/304)
 - Self-limiting parenchymal hemorrhage: 19.1% (58/304)
Results

Table 2: SJHH complications vs. SIR-ACR Standards of Practice (2010)

<table>
<thead>
<tr>
<th></th>
<th>Complication</th>
<th>Complication rate range (%)</th>
<th>Suggested QI threshold (%)</th>
<th>SJHH comp. rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td>Pneumothorax</td>
<td>12-45</td>
<td>45</td>
<td>32.9</td>
</tr>
<tr>
<td></td>
<td>Thoracostomy tube placement</td>
<td>2-15</td>
<td>20</td>
<td>5.9</td>
</tr>
<tr>
<td>Major</td>
<td>Air embolism</td>
<td>0.06-0.07</td>
<td><0.1</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Hemoptysis requiring therapy</td>
<td>0.5</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Thoracostomy tube placement requiring therapy</td>
<td>1-2</td>
<td>3</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Results

- **Older age** (p=0.025), **lower DLCO values** (p=0.014), and **smaller lesions** (p=0.003) were significantly associated with an increased risk of complications.

- **Lesion location and number of tissue samples obtained and passages** were **not** associated with complication events (p>0.05).
Discussion

- Complications associated with lung biopsy are not uncommon, but most events are mild and do **not** require intervention.

- **Older patients** may be more prone to complications due to general frailty

- Low **DLCO values** are an indicator of impaired lung function, as well as predictors of poor lung cancer resection outcomes

- **Smaller lesions** are more difficult to biopsy, and may thus cause increased parenchymal bleeding and/or require a greater number of needle passes
Conclusions

• The complication rates at SJHH after CT-TTNB for lung cancer diagnosis were in line with ACR-SIR guidelines

• In our experience, complication rates were **not** impacted by the number of tissue samples collected

• Thus, completing additional passages **through the coaxial needle** in an attempt at obtaining a definitive tissue diagnosis should **not** be considered unsafe
Recommendations

• Added precautions should be taken with patients displaying any or all of the risk factors (old age, low DLCO values, and/or small lesion size). This includes:
 ▫ Informing patient of increased risk of procedure
 ▫ Ensuring patient lies stably in order to minimize bleeding or pneumothorax
References

• Lung cancer statistics (2013). *Canadian Cancer Society*.