
A Part of the Q-CROC-01 Project

C. Naim, A. Constantin, A. Gologan, B. Tetu, A. Aguilar, C. Hoffert, S. McNamara, G. Batist, E. Camlioglu

McGill University
Radiology Department, Jewish General Hospital
No conflict of interest to declare
Personalized Medicine – the present and future of medicine!

• It’s at our door!
• Part of person-centred care
• Goal: find “the right treatment for the right patient”
• In oncology:
 • developing personalized tailored therapies, based on genetic and molecular diagnostic tests
 • minimize cancer resistance, improve efficacy of cancer therapy
 • E.g.: Breast cancer specific targeted therapies, based on Her-2/Neu gene amplification (trastuzumab), ER, PR (adjuvant tx tamoxifen, aromatase inhib)
• Multidisciplinary approach, from bench to bedside
 ➔ a.k.a. “Translational Research”
From cancer genomics to personalized medicine

https://kcryan.wordpress.com/2010/08/26/donna-dickenson-on-personalised-medicine/
Q-CROC – a Multicentric Translational Study

• “Quebec Clinical Research Organization in Cancer”
• Patient stratification to different chemotherapeutic regimens based on their molecular genetic profile
 • Serial tumor biopsy before and after chemotherapy for genomics analysis
 • Who is resistant and why? Personalized response?
 • Tailoring chemotherapy for each person
• Radiology key role: serial tumor biopsies for genomics analysis, post-treatment imaging
• Different cancers studied (breast, NHL, colon)
• Q-CROC-01: colorectal cancer liver metastases
Rationale

• Liver biopsies for **genomics profiling**, not just histopathology!
• **Current Technique:** Standard Operating Procedure (SOP) for ultrasound-guided targeted liver biopsies, based on ACR recommendations
• **Challenge:** criteria for biospecimen adequacy are different for standard histopathology vs genomics analysis
 • Genomics analysis requires higher content of nucleic acids/tumor cells

Question: Is the current SOP going to yield a sample adequacy rate for genomics similar to or worse than that for histopathology analysis?
 • **adequacy rate in the literature = 70-90%** [5]

• First influential variable = tissue sampling by IR!
Objectives

• Determine adequacy rate of biospecimens for molecular profiling, using the current standard operating procedure for targeted liver biopsy
• Determine factors that influence biospecimen adequacy
• Compare our adequacy rate with that of the literature and that proposed by the ACR (75%)

Optimize biospecimen quality for molecular & genomics profiling
Materials and Methods

Inclusion Criteria:
- confirmed CRC with at least one liver metastasis
- confirmed liver metastasis
- patient not initially resectable
- scheduled for first line chemox
- adequate coag profile
- life expectancy ≥ 12 weeks

Exclusion Criteria:
- resectable liver met
- prior therapy for metastatic cancer
- non-diagnostic specimen path
- contraindication to chemox
- brain mets
- pregnant or breastfeeding
- HIV +ve
Materials and Methods

- Baseline CT scan and liver metastasis biopsy (by US) pre-chemotx
- Chemotherapy
- Response evaluation at 8 weeks, then q12weeks with CT
- Re-biopsy liver metastasis if there is recurrence
Liver Biopsy Technique

• 3 needle passes (3 core biopsy samples)
• Evaluation of tissue sample contents: %tumor material (>=50% required), tumour cellularity (>=60% required), necrosis, and stroma

Three liver biopsy passes

1. PBS WASH
2. RNA later
3. Formalin

Frozen biopsy
- Confirm histology (determine % tumor)
- Delineate tumor cells
- Cut
- DNA/RNA Isolation

Harvest Vectastain

FFPE (s)
Liver Biopsy – Standard Operating Procedure

- US-guided by IR
- Conscious sedation
- Sterile draping, local anesthetic
- Free-hand technique
- BioPince™ end-cutting core biopsy device (16- or 18-gauge), Tru-Cut core biopsy device (18-g), or Temno device (18-g)
- Samples put in respective vials, kept at 4°C and shipped immediately to Central Pathology Lab
- Patients kept for observation x 4-6 hours
Statistical Analyses

• Outcome variables:
 • biospecimen adequacy for genomics analysis
 • % tumour cellularity and % tumour content
• Comparison btwn 1st and 2nd tissue samples: paired t-test and Chi-square test
• Comparison btwn types of needles (TruCut, Biopince, Temno): One-way ANOVA and Chi-square test
Results—Subject flowchart

- 72 enrolled
 - 63 included (125 samples)
 - 62 with 2 biopsy samples (124 samples)
 - 1 with 1 biopsy sample (1 sample)
 - 9 excluded
 - No prechemotx biopsy, negative biopsy, withdrawn consent

Nb of samples for genomics analysis
Results

• Among 62 patients, overall biospecimen adequacy rate 85.5%

• Among 125 biospecimens, adequacy rate was 65%
Results

• Biospecimen adequacy for genomics analysis:
 • No significant difference between 1st and 2nd tissue samples (p=0.852)
 • No significant difference between needle types (p=0.239)

• % Tumor material and % Tumor cellularity:
 • No significant difference between 1st and 2nd tissue samples (p=0.542; p=0.065)
 • No significant difference between needle types (p=0.252; p=0.393)
Discussion

• Biospecimen adequacy rate for standard pathology:
 • In the literature: 70 to 90%
 • Recommended by the ACR: >=75%

• Our adequacy rate for genomics analysis:
 • Per patient: 85.5%
 • Per needle pass: 65%

• Good results compared to recommendations

• Results confirm need for at least 2 needle passes to reach recommended adequacy rate
Conclusion

- Standard Operating Procedure for US-guided targeted liver biopsy is satisfactory in tissue sampling for genomics analysis
 - Good adequacy rate compared to literature and recommendations
- The order of sampling (1^{st} versus 2^{nd} needle pass) and the type of biopsy needle does not influence the adequacy rate nor tumor cell content.
- At least 2 needle passes are required per patient to obtain a satisfactory adequacy rate.
Future Directions

• More patients are being recruited; final analyses will ensue
• Comparison with the 3rd tissue sample in progress
• Comparison of location of targeted metastatic liver lesion
• Factor-in the experience of the operator
Thank you